Files
PixelDefense/engine/libs/flecs/include/flecs/addons/cpp/component.hpp

547 lines
18 KiB
C++

/**
* @file addons/cpp/component.hpp
* @brief Registering/obtaining info from components.
*/
#pragma once
#include <ctype.h>
#include <stdio.h>
/**
* @defgroup cpp_components Components
* @brief Registering and working with components.
*
* \ingroup cpp_core
* @{
*/
namespace flecs {
namespace _ {
// Trick to obtain typename from type, as described here
// https://blog.molecular-matters.com/2015/12/11/getting-the-type-of-a-template-argument-as-string-without-rtti/
//
// The code from the link has been modified to work with more types, and across
// multiple compilers. The resulting string should be the same on all platforms
// for all compilers.
//
#if defined(__GNUC__) || defined(_WIN32)
template <typename T>
inline static const char* type_name() {
static const size_t len = ECS_FUNC_TYPE_LEN(const char*, type_name, ECS_FUNC_NAME);
static char result[len + 1] = {};
static const size_t front_len = ECS_FUNC_NAME_FRONT(const char*, type_name);
return ecs_cpp_get_type_name(result, ECS_FUNC_NAME, len, front_len);
}
#else
#error "implicit component registration not supported"
#endif
// Translate a typename into a language-agnostic identifier. This allows for
// registration of components/modules across language boundaries.
template <typename T>
inline static const char* symbol_name() {
static const size_t len = ECS_FUNC_TYPE_LEN(const char*, symbol_name, ECS_FUNC_NAME);
static char result[len + 1] = {};
return ecs_cpp_get_symbol_name(result, type_name<T>(), len);
}
template <> inline const char* symbol_name<uint8_t>() {
return "u8";
}
template <> inline const char* symbol_name<uint16_t>() {
return "u16";
}
template <> inline const char* symbol_name<uint32_t>() {
return "u32";
}
template <> inline const char* symbol_name<uint64_t>() {
return "u64";
}
template <> inline const char* symbol_name<int8_t>() {
return "i8";
}
template <> inline const char* symbol_name<int16_t>() {
return "i16";
}
template <> inline const char* symbol_name<int32_t>() {
return "i32";
}
template <> inline const char* symbol_name<int64_t>() {
return "i64";
}
template <> inline const char* symbol_name<float>() {
return "f32";
}
template <> inline const char* symbol_name<double>() {
return "f64";
}
// If type is trivial, don't register lifecycle actions. While the functions
// that obtain the lifecycle callback do detect whether the callback is required
// adding a special case for trivial types eases the burden a bit on the
// compiler as it reduces the number of templates to evaluate.
template<typename T, enable_if_t<
std::is_trivial<T>::value == true
>* = nullptr>
void register_lifecycle_actions(ecs_world_t*, ecs_entity_t) { }
// If the component is non-trivial, register component lifecycle actions.
// Depending on the type not all callbacks may be available.
template<typename T, enable_if_t<
std::is_trivial<T>::value == false
>* = nullptr>
void register_lifecycle_actions(
ecs_world_t *world,
ecs_entity_t component)
{
ecs_type_hooks_t cl{};
cl.ctor = ctor<T>();
cl.dtor = dtor<T>();
cl.copy = copy<T>();
cl.copy_ctor = copy_ctor<T>();
cl.move = move<T>();
cl.move_ctor = move_ctor<T>();
cl.ctor_move_dtor = ctor_move_dtor<T>();
cl.move_dtor = move_dtor<T>();
ecs_set_hooks_id( world, component, &cl);
}
// Class that manages component ids across worlds & binaries.
// The cpp_type class stores the component id for a C++ type in a static global
// variable that is shared between worlds. Whenever a component is used this
// class will check if it already has been registered (has the global id been
// set), and if not, register the component with the world.
//
// If the id has been set, the class will ensure it is known by the world. If it
// is not known the component has been registered by another world and will be
// registered with the world using the same id. If the id does exist, the class
// will register it as a component, and verify whether the input is consistent.
template <typename T>
struct cpp_type_impl {
// Initialize component identifier
static void init(
entity_t entity,
bool allow_tag = true)
{
if (s_reset_count != ecs_cpp_reset_count_get()) {
reset();
}
// If an identifier was already set, check for consistency
if (s_id) {
ecs_assert(s_id == entity, ECS_INCONSISTENT_COMPONENT_ID,
type_name<T>());
ecs_assert(allow_tag == s_allow_tag, ECS_INVALID_PARAMETER, NULL);
// Component was already registered and data is consistent with new
// identifier, so nothing else to be done.
return;
}
// Component wasn't registered yet, set the values. Register component
// name as the fully qualified flecs path.
s_id = entity;
s_allow_tag = allow_tag;
s_size = sizeof(T);
s_alignment = alignof(T);
if (is_empty<T>::value && allow_tag) {
s_size = 0;
s_alignment = 0;
}
s_reset_count = ecs_cpp_reset_count_get();
}
// Obtain a component identifier for explicit component registration.
static entity_t id_explicit(world_t *world = nullptr,
const char *name = nullptr, bool allow_tag = true, flecs::id_t id = 0,
bool is_component = true, bool *existing = nullptr)
{
if (!s_id) {
// If no world was provided the component cannot be registered
ecs_assert(world != nullptr, ECS_COMPONENT_NOT_REGISTERED, name);
} else {
ecs_assert(!id || s_id == id, ECS_INCONSISTENT_COMPONENT_ID, NULL);
}
// If no id has been registered yet for the component (indicating the
// component has not yet been registered, or the component is used
// across more than one binary), or if the id does not exists in the
// world (indicating a multi-world application), register it. */
if (!s_id || (world && !ecs_exists(world, s_id))) {
init(s_id ? s_id : id, allow_tag);
ecs_assert(!id || s_id == id, ECS_INTERNAL_ERROR, NULL);
const char *symbol = nullptr;
if (id) {
symbol = ecs_get_symbol(world, id);
}
if (!symbol) {
symbol = symbol_name<T>();
}
entity_t entity = ecs_cpp_component_register_explicit(
world, s_id, id, name, type_name<T>(), symbol,
s_size, s_alignment, is_component, existing);
s_id = entity;
// If component is enum type, register constants
#if FLECS_CPP_ENUM_REFLECTION_SUPPORT
_::init_enum<T>(world, entity);
#endif
}
// By now the identifier must be valid and known with the world.
ecs_assert(s_id != 0 && ecs_exists(world, s_id),
ECS_INTERNAL_ERROR, NULL);
return s_id;
}
// Obtain a component identifier for implicit component registration. This
// is almost the same as id_explicit, except that this operation
// automatically registers lifecycle callbacks.
// Additionally, implicit registration temporarily resets the scope & with
// state of the world, so that the component is not implicitly created with
// the scope/with of the code it happens to be first used by.
static id_t id(world_t *world = nullptr, const char *name = nullptr,
bool allow_tag = true)
{
// If no id has been registered yet, do it now.
if (!registered(world)) {
ecs_entity_t prev_scope = 0;
ecs_id_t prev_with = 0;
if (world) {
prev_scope = ecs_set_scope(world, 0);
prev_with = ecs_set_with(world, 0);
}
// This will register a component id, but will not register
// lifecycle callbacks.
bool existing;
id_explicit(world, name, allow_tag, 0, true, &existing);
// Register lifecycle callbacks, but only if the component has a
// size. Components that don't have a size are tags, and tags don't
// require construction/destruction/copy/move's. */
if (size() && !existing) {
register_lifecycle_actions<T>(world, s_id);
}
if (prev_with) {
ecs_set_with(world, prev_with);
}
if (prev_scope) {
ecs_set_scope(world, prev_scope);
}
}
// By now we should have a valid identifier
ecs_assert(s_id != 0, ECS_INTERNAL_ERROR, NULL);
return s_id;
}
// Return the size of a component.
static size_t size() {
ecs_assert(s_id != 0, ECS_INTERNAL_ERROR, NULL);
return s_size;
}
// Return the alignment of a component.
static size_t alignment() {
ecs_assert(s_id != 0, ECS_INTERNAL_ERROR, NULL);
return s_alignment;
}
// Was the component already registered.
static bool registered(flecs::world_t *world) {
if (s_reset_count != ecs_cpp_reset_count_get()) {
reset();
}
if (s_id == 0) {
return false;
}
if (world && !ecs_exists(world, s_id)) {
return false;
}
return true;
}
// This function is only used to test cross-translation unit features. No
// code other than test cases should invoke this function.
static void reset() {
s_id = 0;
s_size = 0;
s_alignment = 0;
s_allow_tag = true;
}
static entity_t s_id;
static size_t s_size;
static size_t s_alignment;
static bool s_allow_tag;
static int32_t s_reset_count;
};
// Global templated variables that hold component identifier and other info
template <typename T> entity_t cpp_type_impl<T>::s_id;
template <typename T> size_t cpp_type_impl<T>::s_size;
template <typename T> size_t cpp_type_impl<T>::s_alignment;
template <typename T> bool cpp_type_impl<T>::s_allow_tag( true );
template <typename T> int32_t cpp_type_impl<T>::s_reset_count;
// Front facing class for implicitly registering a component & obtaining
// static component data
// Regular type
template <typename T>
struct cpp_type<T, if_not_t< is_pair<T>::value >>
: cpp_type_impl<base_type_t<T>> { };
// Pair type
template <typename T>
struct cpp_type<T, if_t< is_pair<T>::value >>
{
// Override id method to return id of pair
static id_t id(world_t *world = nullptr) {
return ecs_pair(
cpp_type< pair_first_t<T> >::id(world),
cpp_type< pair_second_t<T> >::id(world));
}
};
} // namespace _
/** Untyped component class.
* Generic base class for flecs::component.
*
* \ingroup cpp_components
*/
struct untyped_component : entity {
using entity::entity;
# ifdef FLECS_META
# include "mixins/meta/untyped_component.inl"
# endif
# ifdef FLECS_METRICS
# include "mixins/metrics/untyped_component.inl"
# endif
};
/** Component class.
* Class used to register components and component metadata.
*
* \ingroup cpp_components
*/
template <typename T>
struct component : untyped_component {
/** Register a component.
* If the component was already registered, this operation will return a handle
* to the existing component.
*
* @param world The world for which to register the component.
* @param name Optional name (overrides typename).
* @param allow_tag If true, empty types will be registered with size 0.
* @param id Optional id to register component with.
*/
component(
flecs::world_t *world,
const char *name = nullptr,
bool allow_tag = true,
flecs::id_t id = 0)
{
const char *n = name;
bool implicit_name = false;
if (!n) {
n = _::type_name<T>();
/* Keep track of whether name was explicitly set. If not, and the
* component was already registered, just use the registered name.
*
* The registered name may differ from the typename as the registered
* name includes the flecs scope. This can in theory be different from
* the C++ namespace though it is good practice to keep them the same */
implicit_name = true;
}
if (_::cpp_type<T>::registered(world)) {
/* Obtain component id. Because the component is already registered,
* this operation does nothing besides returning the existing id */
id = _::cpp_type<T>::id_explicit(world, name, allow_tag, id);
ecs_cpp_component_validate(world, id, n, _::symbol_name<T>(),
_::cpp_type<T>::size(),
_::cpp_type<T>::alignment(),
implicit_name);
} else {
/* If component is registered from an existing scope, ignore the
* namespace in the name of the component. */
if (implicit_name && (ecs_get_scope(world) != 0)) {
/* If the type is a template type, make sure to ignore ':'
* inside the template parameter list. */
const char *start = strchr(n, '<'), *last_elem = NULL;
if (start) {
const char *ptr = start;
while (ptr[0] && (ptr[0] != ':') && (ptr > n)) {
ptr --;
}
if (ptr[0] == ':') {
last_elem = ptr;
}
} else {
last_elem = strrchr(n, ':');
}
if (last_elem) {
name = last_elem + 1;
}
}
/* Find or register component */
bool existing;
id = ecs_cpp_component_register(world, id, n, _::symbol_name<T>(),
ECS_SIZEOF(T), ECS_ALIGNOF(T), implicit_name, &existing);
/* Initialize static component data */
id = _::cpp_type<T>::id_explicit(world, name, allow_tag, id);
/* Initialize lifecycle actions (ctor, dtor, copy, move) */
if (_::cpp_type<T>::size() && !existing) {
_::register_lifecycle_actions<T>(world, id);
}
}
m_world = world;
m_id = id;
}
/** Register on_add hook. */
template <typename Func>
component<T>& on_add(Func&& func) {
using Delegate = typename _::each_delegate<
typename std::decay<Func>::type, T>;
flecs::type_hooks_t h = get_hooks();
ecs_assert(h.on_add == nullptr, ECS_INVALID_OPERATION,
"on_add hook is already set");
BindingCtx *ctx = get_binding_ctx(h);
h.on_add = Delegate::run_add;
ctx->on_add = FLECS_NEW(Delegate)(FLECS_FWD(func));
ctx->free_on_add = reinterpret_cast<ecs_ctx_free_t>(
_::free_obj<Delegate>);
ecs_set_hooks_id(m_world, m_id, &h);
return *this;
}
/** Register on_remove hook. */
template <typename Func>
component<T>& on_remove(Func&& func) {
using Delegate = typename _::each_delegate<
typename std::decay<Func>::type, T>;
flecs::type_hooks_t h = get_hooks();
ecs_assert(h.on_remove == nullptr, ECS_INVALID_OPERATION,
"on_remove hook is already set");
BindingCtx *ctx = get_binding_ctx(h);
h.on_remove = Delegate::run_remove;
ctx->on_remove = FLECS_NEW(Delegate)(FLECS_FWD(func));
ctx->free_on_remove = reinterpret_cast<ecs_ctx_free_t>(
_::free_obj<Delegate>);
ecs_set_hooks_id(m_world, m_id, &h);
return *this;
}
/** Register on_set hook. */
template <typename Func>
component<T>& on_set(Func&& func) {
using Delegate = typename _::each_delegate<
typename std::decay<Func>::type, T>;
flecs::type_hooks_t h = get_hooks();
ecs_assert(h.on_set == nullptr, ECS_INVALID_OPERATION,
"on_set hook is already set");
BindingCtx *ctx = get_binding_ctx(h);
h.on_set = Delegate::run_set;
ctx->on_set = FLECS_NEW(Delegate)(FLECS_FWD(func));
ctx->free_on_set = reinterpret_cast<ecs_ctx_free_t>(
_::free_obj<Delegate>);
ecs_set_hooks_id(m_world, m_id, &h);
return *this;
}
# ifdef FLECS_META
# include "mixins/meta/component.inl"
# endif
private:
using BindingCtx = _::component_binding_ctx;
BindingCtx* get_binding_ctx(flecs::type_hooks_t& h){
BindingCtx *result = static_cast<BindingCtx*>(h.binding_ctx);
if (!result) {
result = FLECS_NEW(BindingCtx);
h.binding_ctx = result;
h.binding_ctx_free = reinterpret_cast<ecs_ctx_free_t>(
_::free_obj<BindingCtx>);
}
return result;
}
flecs::type_hooks_t get_hooks() {
const flecs::type_hooks_t* h = ecs_get_hooks_id(m_world, m_id);
if (h) {
return *h;
} else {
return {};
}
}
};
/** Get id currently assigned to component. If no world has registered the
* component yet, this operation will return 0. */
template <typename T>
flecs::entity_t type_id() {
if (_::cpp_type<T>::s_reset_count == ecs_cpp_reset_count_get()) {
return _::cpp_type<T>::s_id;
} else {
return 0;
}
}
/** Reset static component ids.
* When components are registered their component ids are stored in a static
* type specific variable. This stored id is passed into component registration
* functions to ensure consistent ids across worlds.
*
* In some cases this can be undesirable, like when a process repeatedly creates
* worlds with different components. A typical example where this can happen is
* when running multiple tests in a single process, where each test registers
* its own set of components.
*
* This operation can be used to prevent reusing of component ids and force
* generating a new ids upon registration.
*
* Note that this operation should *never* be called while there are still
* alive worlds in a process. Doing so results in undefined behavior.
*
* Also note that this operation does not actually change the static component
* variables. It only ensures that the next time a component id is requested, a
* new id will be generated.
*
* \ingroup cpp_components
*/
inline void reset() {
ecs_cpp_reset_count_inc();
}
}
/** @} */