|
|
|
|
@@ -0,0 +1,136 @@
|
|
|
|
|
#include <sync_point_delete.h>
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
|
double x, y;
|
|
|
|
|
} Position, Velocity;
|
|
|
|
|
|
|
|
|
|
void Move(ecs_iter_t *it) {
|
|
|
|
|
Position *p = ecs_field(it, Position, 1);
|
|
|
|
|
const Velocity *v = ecs_field(it, const Velocity, 2);
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < it->count; i ++) {
|
|
|
|
|
p[i].x += v[i].x;
|
|
|
|
|
p[i].y += v[i].y;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void DeleteEntity(ecs_iter_t *it) {
|
|
|
|
|
const Position *p = ecs_field(it, Position, 1);
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < it->count; i ++) {
|
|
|
|
|
if (p[i].x >= 3) {
|
|
|
|
|
ecs_entity_t e = it->entities[i];
|
|
|
|
|
printf("Delete entity %s\n", ecs_get_name(it->world, e));
|
|
|
|
|
ecs_delete(it->world, e);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void PrintPosition(ecs_iter_t *it) {
|
|
|
|
|
const Position *p = ecs_field(it, const Position, 1);
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < it->count; i ++) {
|
|
|
|
|
printf("%s: {%f, %f}\n", ecs_get_name(it->world, it->entities[i]),
|
|
|
|
|
p[i].x, p[i].y);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main(int argc, char *argv[]) {
|
|
|
|
|
ecs_world_t *ecs = ecs_init_w_args(argc, argv);
|
|
|
|
|
|
|
|
|
|
// This example shows how to annotate systems that delete entities, in a way
|
|
|
|
|
// that allows the scheduler to correctly insert sync points. See the
|
|
|
|
|
// sync_point example for more details on sync points.
|
|
|
|
|
//
|
|
|
|
|
// While annotating a system for a delete operation follows the same
|
|
|
|
|
// design as other operations, one key difference is that a system often
|
|
|
|
|
// does not know which components a to be deleted entity has. This makes it
|
|
|
|
|
// impossible to annotate the system in advance for specific components.
|
|
|
|
|
//
|
|
|
|
|
// To ensure the scheduler is still able to insert the correct sync points,
|
|
|
|
|
// a system can use a wildcard to indicate that any component could be
|
|
|
|
|
// modified by the system, which forces the scheduler to insert a sync.
|
|
|
|
|
|
|
|
|
|
ECS_COMPONENT(ecs, Position);
|
|
|
|
|
ECS_COMPONENT(ecs, Velocity);
|
|
|
|
|
|
|
|
|
|
// Basic move system.
|
|
|
|
|
ECS_SYSTEM(ecs, Move, EcsOnUpdate, Position, [in] Velocity);
|
|
|
|
|
|
|
|
|
|
// Delete entities when p.x >= 3. Add wildcard annotation to indicate any
|
|
|
|
|
// component could be written by the system. Position itself is added as
|
|
|
|
|
// const, since inside the system we're only reading it.
|
|
|
|
|
//
|
|
|
|
|
// Note how the system uses the same annotations as the sync_point example.
|
|
|
|
|
ECS_SYSTEM(ecs, DeleteEntity, EcsOnUpdate, [in] Position, [out] *());
|
|
|
|
|
|
|
|
|
|
// Print resulting Position
|
|
|
|
|
ECS_SYSTEM(ecs, PrintPosition, EcsPostUpdate, [in] Position);
|
|
|
|
|
|
|
|
|
|
// Create a few test entities for a Position, Velocity query
|
|
|
|
|
ecs_entity_t e1 = ecs_new_entity(ecs, "e1");
|
|
|
|
|
ecs_set(ecs, e1, Position, {0, 0});
|
|
|
|
|
ecs_set(ecs, e1, Velocity, {1, 2});
|
|
|
|
|
|
|
|
|
|
ecs_entity_t e2 = ecs_new_entity(ecs, "e2");
|
|
|
|
|
ecs_set(ecs, e2, Position, {1, 2});
|
|
|
|
|
ecs_set(ecs, e2, Velocity, {1, 2});
|
|
|
|
|
|
|
|
|
|
// Run systems. Debug logging enables us to see the generated schedule
|
|
|
|
|
ecs_log_set_level(1);
|
|
|
|
|
while (ecs_progress(ecs, 0.0f)) {
|
|
|
|
|
if (!ecs_count(ecs, Position)) {
|
|
|
|
|
break; // No more entities left with Position
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
ecs_log_set_level(-1); // Restore so we don't get world cleanup logs
|
|
|
|
|
|
|
|
|
|
// Output:
|
|
|
|
|
// info: pipeline rebuild:
|
|
|
|
|
// info: | schedule: threading: 0, staging: 1:
|
|
|
|
|
// info: | | system Move
|
|
|
|
|
// info: | | system DeleteEntity
|
|
|
|
|
// info: | | merge
|
|
|
|
|
// info: | schedule: threading: 0, staging: 1:
|
|
|
|
|
// info: | | system PrintPosition
|
|
|
|
|
// info: | | merge
|
|
|
|
|
// e1: {1, 2}
|
|
|
|
|
// e2: {2, 4}
|
|
|
|
|
// Delete entity e2
|
|
|
|
|
// e1: {2, 4}
|
|
|
|
|
// Delete entity e1
|
|
|
|
|
// info: system Move deactivated
|
|
|
|
|
// info: system DeleteEntity deactivated
|
|
|
|
|
// info: system PrintPosition deactivated
|
|
|
|
|
//
|
|
|
|
|
// Removing the wildcard annotation from the DeleteEntity system will
|
|
|
|
|
// remove the first sync point.
|
|
|
|
|
//
|
|
|
|
|
// Note how after both entities are deleted, all three systems are
|
|
|
|
|
// deactivated. This happens when there are no matching entities for a
|
|
|
|
|
// system. A deactivated system is not ran by the scheduler, which reduces
|
|
|
|
|
// overhead.
|
|
|
|
|
//
|
|
|
|
|
// To create the same system with ecs_system_init, do:
|
|
|
|
|
// ecs_system_init(ecs, &(ecs_system_desc_t){
|
|
|
|
|
// .query.filter.terms = {
|
|
|
|
|
// {
|
|
|
|
|
// .id = ecs_id(Position),
|
|
|
|
|
// .inout = EcsIn
|
|
|
|
|
// },
|
|
|
|
|
// {
|
|
|
|
|
// .id = EcsWildcard,
|
|
|
|
|
// .inout = EcsOut,
|
|
|
|
|
// .src.flags = EcsIsEntity
|
|
|
|
|
// }
|
|
|
|
|
// },
|
|
|
|
|
// .entity = {
|
|
|
|
|
// .name = "DeleteEntity",
|
|
|
|
|
// .add = {ecs_dependson(EcsOnUpdate)}
|
|
|
|
|
// },
|
|
|
|
|
// .callback = DeleteEntity
|
|
|
|
|
// });
|
|
|
|
|
|
|
|
|
|
return ecs_fini(ecs);
|
|
|
|
|
}
|